
Cite as: Owoc, M. L., & Stambulski, A. (2025). Software quality management: Machine learning for

recommendation of regression test suites. Journal of Economics and Management, 47, 117-137.

https://doi.org/10.22367/jem.2025.47.05

Journal of Economics and Management
 ISSN 2719-9975 Vol. 47 2025

Mieczysław Lech Owoc

 https://orcid.org/0000-0003-1578-6934

Department of Business Intelligence

in Management

Faculty of Business and Management

Wroclaw University of Economics

and Business, Poland

mieczyslaw.owoc@ue.wroc.pl

Adam Stambulski

 https://orcid.org/0009-0002-9099-2471

Department of Business Intelligence

in Management

Faculty of Business and Management

Wroclaw University of Economics

and Business, Poland

adam.stambulski@gmail.com

Software quality management: Machine learning

for recommendation of regression test suites

Accepted by Editor Ewa W. Ziemba | Received: December 17, 2023, | Revised: May 24, 2024;

November 15, 2024; January 14, 2025 | Accepted: February 10, 2025 | Published: March 11, 2025.

© 2025 Author(s). This article is licensed under the Creative Commons Attribution-NonCommercial 4.0 license

(https://creativecommons.org/licenses/by-nc/4.0/)

Abstract

Aim/purpose – This study aims to demonstrate machine learning (ML) applications to en-

hance software development quality management, specifically through optimizing regression

test suites. This research aims to demonstrate how ML can predict and prioritize the most

relevant regression tests based on software changes and historical testing data, thereby reduc-

ing unnecessary testing, assuring software quality, and leading to significant cost savings.

Design/methodology/approach – The methodology of this study involves developing and

training a ML model using historical data on software modifications and test executions. The

model analyzes the data to predict and prioritize the most relevant regression tests for new

software builds. This approach is validated through a comparative analysis, whereby the

recommendations from the ML model are benchmarked against traditional regression testing

methods to evaluate their efficiency and cost-effectiveness. The results demonstrate the prac-

tical advantages of integrating ML into software quality management processes.

Findings – The conclusions indicate that implementing ML to optimize regression testing

has the potential to significantly improve test efficiency and reduce operational costs. The

ML model effectively prioritized crucial test cases, reducing the number of unnecessary tests

by 29.24% while maintaining the required quality assurance level and focusing efforts on

areas with the highest impact. This optimization not only streamlines the testing process but

also significantly improves the allocation of resources and cost-effectiveness in software

development practices.

https://doi.org/10.22367/jem.2025.47.05
https://orcid.org/0000-0003-1578-6934
mailto:mieczyslaw.owoc@ue.wroc.pl
https://orcid.org/0009-0002-9099-2471
mailto:adam.stambulski@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/

M. L. Owoc, & A. Stambulski

118

Research implications/limitations – The research indicated that future studies should adopt

more advanced ML algorithms, test these methods on a range of software products, and adopt

a more diverse approach to testing. Such an expansion of research may provide better results

and a deeper understanding of the role of ML in quality assurance, with the potential to opti-

mize software development processes more broadly. Furthermore, establishing a more robust

link between software code and specific tests within the scope of regression tests could en-

hance the effectiveness of ML-driven recommendations for regression test suites.

Originality/value/contribution – Integrating ML into regression testing selection represents

a novel approach to the software development process, offering enhanced efficiency and cost

savings. This research exemplifies the potential for transforming traditional testing method-

ologies, thereby making a valuable contribution to the field of software quality assurance.

The study demonstrates how advanced technologies can optimize software development

processes, reducing costs while maintaining an assured level of software product quality.

Keywords: Quality management, machine learning, software testing, regression test suite.

JEL Classification: C61; C63; C91.

1. Introduction

Development of new applications and, more generally, software packages is still

a big challenge for programmers and software companies. It is a matter of

changing technologies, growing users’ expectations (e.g., adding new function-

alities), conditions of use, and many other determinants. To be positively as-

sessed by recipients, software should be of high quality. Therefore, software

quality management (SQM) is a must; it relies on the systematic and organized

process of all necessary activities to ensure software quality throughout the en-

tire development life cycle. It embraces various processes, techniques, and

methodologies used to monitor, control, and improve the quality of software

products. This paper focuses on testing as the essential phase in the development

life cycle, considering the usability of machine learning (ML) as a supportive

technique of SQM (Kalech et al., 2021; Nama, 2024). In the field of software

development, continuous integration (CI) is a software development practice that

involves regularly integrating code changes from multiple developers into

a shared code repository. This practice allows for early detection of integration

issues and ensures that the developed software remains stable and functional

(Arachchi & Perera, 2018). A critical aspect of CI is the execution of a regres-

sion test suite. The regression test suite is a collection of tests designed to verify

that previously developed and tested software still functions correctly after in-

troducing new changes. By running the regression test suite as part of the CI

process, developers and testers can quickly identify any unintended side effects

Software quality management: Machine learning for recommendation…

119

caused by the recent code changes and ensure that new code changes do not

break existing functionality and that the software continues to meet the desired

quality standards. These tests are vital for ensuring that previously delivered

functionalities continue to work correctly. This process is ongoing and executed

with each new software version (Mårtensson et al., 2019). The choice of a soft-

ware development life cycle (SDLC) model depends on factors like organiza-

tional size and industry specifics, shaping the overall software product life cycle

(Rai & Seth,2014; Soares et al., 2022).

The continuous addition of new features increases the number of regression

tests in a phenomenon known as the snowball effect. Each new software release

adds additional regression tests to the scope. The growing number of regression

tests necessitates constant analysis and optimization, yet it is a technically com-

plex and time-consuming activity that requires knowledge and experience. The

growing number of regression tests performed for each new software version

increases the cost of product development. It extends the time to validate the

product for delivering subsequent versions of the new software version to the

customers (ISTQB Testing, 2018; Rai & Seth, 2014).

The introduction of new functionalities into the software product necessi-

tates the creation of new tests to validate them. These new tests are executed and

become candidates for a regression test suite. As a result of this process, the

scope of regression tests is constantly increasing. Implementing a constant opti-

mization process is necessary to prevent the regression test suites from becoming

too large. This involves selecting, prioritizing, and occasionally arguing test

cases to reach the most efficient and effective scope for regression tests (Forgács

& Kovács, 2024).

In the context of this article’s focus on regression test scope optimization, ap-

plying ML based tools to recommend regression test cases stands out as a strategic

approach. These tools prove instrumental in achieving a more efficient and effective

regression test scope by delving into software changes and historical test results.

This streamlines the testing process and contributes to enhanced software quality

and resource utilization, which is crucial for SQM (Marijan, 2023).

This article aims to investigate the effectiveness of ML techniques in opti-

mizing the scope of regression testing in software development and to assess

their impact on SQM. The research hypothesis is to validate whether applying

ML techniques in regression testing can significantly improve the efficiency and

effectiveness of SQM by optimizing the scope of regression tests. The following

sections of the paper address specific aspects of ML research in software regres-

M. L. Owoc, & A. Stambulski

120

sion testing. Section 2 provides a comprehensive literature review and research

method, summarizing previous studies and focusing on software quality assur-

ance using artificial intelligence (AI) and ML techniques. Section 3 outlines the

SQM stages, aspects of software development processes, and their impact on

quality. Section 4 presents the research methodology, including the experimental

design, data collection methods, and statistical analysis techniques. Section 5

describes two key performance indicators (KPIs) for measuring the effectiveness

of ML models in recommending regression test suites. Section 6 discusses the

significance of the findings in the broader scientific context, drawing connec-

tions to existing theories and suggesting potential avenues for further research.

Finally, Section 7 concludes the article by summarizing the main findings, dis-

cussing their implications, and suggesting potential applications or future direc-

tions for the field.

2. Literature review and research methods

Literature research indicates many possibilities for applying ML to specific as-

pects of software testing. Software engineering uses the following methods and

techniques of AI (ISTQB AI Testing, 2021; Khaliq, 2022; Virvou et al., 2022;

Yaraghi, 2022).

Fuzzy logic and probabilistic methods in AI represent a nuanced approach

to dealing with the inherent uncertainties and probabilistic nature of real-world

problems. Applying fuzzy logic and probabilistic methods in AI for software

testing brings a level of sophistication that aligns with real-world systems’ un-

predictable and probabilistic nature, offering a more adaptive and comprehen-

sive approach to quality assurance.

The classification, learning, and prediction, particularly when embodied by

ML, offer a robust set of tools for various applications within software testing,

like defect management, defect prediction, and user interface testing (Theissler

et al., 2021).

Computational search and optimization techniques offer valuable contribu-

tions to software testing, particularly in automating test case generation, identi-

fying the smallest number of test cases that achieves a given coverage criterion,

optimizing regression testing, and navigating complex test spaces. The adapta-

bility and overlap with other AI technologies contribute to a holistic approach to

addressing the multifaceted challenges of software testing (Russell & Norvig,

2020).

Software quality management: Machine learning for recommendation…

121

In some areas, AI/ML tools can significantly impact software quality assur-

ance (ISTQB AI Testing, 2021).

 Analysis of reported defects: AI/ML tools can scrutinize reported defects,

offering insights into patterns, severity, and potential root causes. This aids in

prioritizing and addressing critical issues efficiently (Kim et al., 2021).

 Test case generation: ML algorithms can assist in the automated generation

of test cases, streamlining the testing process and ensuring comprehensive

coverage of functionalities (Tuncali et al., 2019).

 Optimizing regression test suites: AI-based tools analyze past test results,

defects, and recent changes to intelligently select, prioritize, and augment test

cases (Da Roza, 2022; Marijan et al., 2018; Pan et al., 2022; Sutar, 2020).

 Defect prediction: Predictive analytics powered by ML can anticipate poten-

tial defects by analyzing historical data, enabling proactive measures to be

taken before issues escalate (Pachouly et al., 2022).

 Testing the user interface (GUI): AI/ML tools play a pivotal role in automat-

ing and optimizing the testing of user interfaces, ensuring robust performance

and user experience (Stige et al., 2023)

 Requirements analysis: AI/ML tools help in analyzing and understanding

requirements, ensuring alignment with stakeholder needs, and minimizing

misinterpretations (Liu et al., 2022).

 Performance monitoring and optimization: AI/ML tools monitor application

performance, identify bottlenecks, and suggest optimizations, contributing to

enhanced software performance (Gill et al., 2022).

 Log analysis: Efficient debugging by ML-powered log analysis tools auto-

mate the identification of issues in logs, expediting debugging processes

(Shash, 2021; Yang et al., 2021).

Integrating AI/ML in software quality assurance introduces intelligent au-

tomation, data-driven decision-making, and enhanced adaptability, ultimately

contributing to higher software quality and more efficient testing processes.

Quality management in software engineering involves systematic processes

and practices to ensure that software products meet predefined quality standards

and user expectations (Kobyliński, 2021; Laporte & April, 2018).

The key aspects of the quality covering phases or steps of the system devel-

opment life cycle, mostly:

 Requirements analysis: Clearly defining and understanding customer re-

quirements is crucial. It sets the foundation for the entire development pro-

cess.

M. L. Owoc, & A. Stambulski

122

 Testing and quality assurance: Rigorous testing throughout the development

life cycle is essential. This includes unit testing, integration testing, system

testing, and acceptance testing. Automated testing tools can enhance efficiency.

 Code reviews: Regular code reviews help identify and address issues early in

the development process. This promotes better code quality and reduces the

likelihood of defects.

 Version control: Using version control systems (e.g., Git) ensures that chang-

es to the codebase are tracked, reversible, and well-managed, contributing to

overall software quality.

 CI/continuous deployment (CD): Implementing CI/CD pipelines automates

the building, testing, and deployment processes, facilitating faster and more

reliable releases (Arachchi & Perera, 2018).

 Documentation: Maintaining comprehensive documentation, including user

manuals and technical documentation, ensures that the software is well-

-understood and can be effectively maintained.

 Bug tracking and resolution: Efficient bug tracking systems help promptly

identify, prioritize, and address issues. This contributes to a more stable and

reliable software product.

 Customer feedback and iterative development: Gathering and incorporating

customer feedback allows continuous improvement. Agile methodologies

promote iterative development cycles, enhancing adaptability to changing re-

quirements.

 Security measures: Implementing security practices, such as code reviews for

security vulnerabilities and regular security audits, is crucial to ensuring the

integrity and safety of the software.

Compliance with established standards such as ISO 9001: Quality Man-

agement Systems (ISO, 2015) and ISO/IEC 25010: Systems and Software Engi-

neering (ISO, 2023). Adhering to these standards provides a robust framework

for maintaining and enhancing software quality. ISO 9001 focuses on quality

management systems, while ISO/IEC 25010 defines specific requirements and

evaluations for software product quality. Together, they ensure that practices

meet industry benchmarks, contributing significantly to the effectiveness of

SQM strategies. This adherence helps achieve high-quality software products

and ensures consistency and reliability in development processes (Goericke,

2020).

Software quality management: Machine learning for recommendation…

123

Apart from analyzing sources focused on SQM using AI techniques, our re-

search method refers to ML experiments for regression test suite optimization.

This highlights the transformative impact of AI/ML tools on software testing. It

covers various areas such as defect analysis, automated test case generation,

regression test suite optimization, defect prediction, GUI testing automation,

requirements analysis, performance monitoring, and log analysis. These tools

introduce intelligent automation, data-driven decision-making, and enhanced

adaptability, ultimately leading to higher software quality and more efficient

testing processes. Integrating AI/ML in testing significantly advances software

quality assurance.

3. Software quality management quests

SQM is a systematic approach to the management and assurance of the quality

of software products throughout their development and lifecycle. This manage-

ment discipline encompasses a number of key practices and principles designed

to ensure that software meets or exceeds customer expectations and adheres to

predefined quality standards. This section provides a comprehensive overview of

the key elements of SQM (Alexsoft Report, 2023; Laporte et al., 2018). SQA

focuses on the processes used in software development to ensure quality. It in-

volves applying standards, methods, and tools throughout the SDLC to prevent

defects and ensure quality. The aim is to improve development and test process-

es so that defects do not arise when the software is being created.

Software quality planning (SQP), like quality planning, focuses on project

management, proposing an individual plan for a specific project. During the

software planning phase, a quality plan should be prepared with assumed stand-

ards, documentation, and other necessary details regarding responsible staff and

means predicted in the process.

Software quality control (SQC) involves testing software to identify de-

fects. Quality control (QC) is a more product-oriented process that is conducted

during the software development process. It includes various forms of testing,

such as unit testing, integration testing, system testing, and acceptance testing, to

ensure that the software meets the required standards.

Software quality improvement (SQI) – after the software is released, ongo-

ing improvements are crucial based on feedback and performance analysis.

Quality improvement involves increasing the software’s effectiveness and effi-

ciency in providing added benefits to both the users and the organization.

M. L. Owoc, & A. Stambulski

124

Furthermore, SQM ensures compliance with standards like ISO 9001: Quality

Management Systems (2015) and ISO/IEC 25010: Systems and Software Engineer-

ing (2023). Effective SQM significantly impacts product quality, lifecycle costs,

customer satisfaction, and time to market. It helps organizations avoid rework costs,

enhance customer satisfaction, and maintain market competitiveness.

For organizations seeking to implement or enhance their SQM practices, in-

tegrating these components seamlessly into the software development lifecycle

is paramount. This integration ensures that quality processes are continuously

monitored and improved (Alam et al., 2024). Implementing a comprehensive

SQM process is of the utmost importance to effectively manage software quali-

ty. This process should include the establishment of general best practices in the

field of software development and project management. The following key prac-

tices in SQM have been identified (Laporte & April, 2018; PMI, 2021):

 Risk management: Identifying and mitigating risks that could impact the

quality of the software. This includes addressing potential issues related to

requirements, design, development, and external factors.

 Configuration management: Managing changes to software artifacts (such as

source code, documentation, and configuration files) to ensure consistency,

traceability, and version control.

 Measurement and metrics: Collecting and analyzing data to assess the quality

of the software and the effectiveness of quality management processes. Met-

rics are used to track progress and make informed decisions.

 Documentation: Creating and maintaining documentation that defines quality

standards, processes, and procedures to ensure all team members are on the

same page.

 Training and competence: Ensuring team members have the necessary skills

and knowledge to adhere to quality management processes and produce high-

-quality software.

 Customer satisfaction: Focusing on meeting the needs and expectations of

end-users and stakeholders to ensure that the software fulfills its intended

purpose.

SQM is integral to the software development lifecycle and essential for

producing reliable, secure, high-quality software products. It helps reduce de-

fects, improve productivity, increase customer satisfaction, and ultimately leads

to a more successful software development process.

Software quality management: Machine learning for recommendation…

125

4. Experiment ML-based tests recommendation for continuous

integration

Machine learning can be pivotal in optimizing regression test suites, particularly

in software testing. ML algorithms can analyze historical data on software changes,

test executions, and outcomes to intelligently recommend which tests to include

in the regression test suites. This process aids in enhancing efficiency, reducing

redundancy, and ensuring that the most relevant tests are prioritized. The appli-

cation of ML in this context contributes to a more streamlined and effective

software testing workflow (ISTQB AI Testing, 2021; Guizzo et al., 2021). This

experiment aimed to create an ML-based tool recommending regression test

suites for new software build versions. The tool achieves this by analyzing data

derived from the historical execution of test cases, the identification of defects,

and software changes resulting from implementing new features. This approach

is particularly valuable in the context of large-scale companies developing com-

plex software products. In such environments, introducing new features fre-

quently entails alterations in multiple software components (Yaraghi, 2022).

The challenge of mapping software code changes to corresponding tests can

be effectively addressed by applying ML-based tools. By enhancing the associa-

tion between code modifications and relevant tests, these tools significantly im-

prove the accuracy of regression test recommendations and provide proper prior-

itization. Recent research underscores the impact of AI-based tools, revealing

a potential 50% reduction in regression test scope while maintaining robust de-

fect detection in the code (Rai & Seth, 2014). Furthermore, analysis indicates

that a 40% reduction in test execution duration is achievable during CI testing

without compromising error detection significantly. This highlights the trans-

formative potential of leveraging AI/ML in optimizing testing processes and

resource utilization (Marijan et al., 2018).

The proposed solution to the problem of increasing the scope of regression

test suites during CI is using ML algorithms to recommend test cases to be per-

formed on the new software build.

Figure 1 presents the workflow of an applied ML-based tool for a recom-

mendation of regression test suites in a CI process.

M. L. Owoc, & A. Stambulski

126

Figure 1. Workflow with a recommendation of regression test suites by ML tool

Note: SW – software.

Source: Authors’ own elaboration.

In the case of advanced software (SW) products, the new functionality is

realized by code changes in software components (marked SW in Figure 1) or

sometimes even in a few of them. The code is committed to the source control

system, and the new software built for the system is created to run the unit and

the component tests. After that, each new valid SW build is deployed on a target

system to execute the regression test suites (subject of research). As part of the

end-to-end system-level testing process, it ensures 100% test coverage for all

supported features. This is done to validate whether all previously released func-

tionalities are still supported.

In software development, system-level testing is crucial for validating a ful-

ly integrated software and hardware product, ensuring it functions as intended

and meets all specified requirements. This testing phase, which follows unit and

integration testing, evaluates software’s operational capabilities and interaction

among various system components. A subset of system-level testing is end-to-

-end testing, which simulates real-world usage scenarios to confirm that the ap-

plication performs consistently from start to finish (Kobyliński, 2021; Mårtens-

son et al., 2019). It is of paramount importance to recognize that the incorpora-

tion of new functionality necessitates the addition of corresponding tests to the

regression test suites. This presents a significant challenge, as the continuous

growth of regression tests necessitates allocating time, resources, and ongoing

optimization efforts to ensure the sustained effectiveness of the testing process.

The problem described was analyzed using a ML algorithm to recommend

regression tests for a new software build. An analysis of the available data indi-

cated that applying the unsupervised ML algorithm, K-means (scikit-learn,

2024) is the best approach. Trials with supervised ML algorithms did not pro-

Software quality management: Machine learning for recommendation…

127

vide promising results. This is mainly due to the lack of correlation between the

code of functionality and validation tests. The K-Means algorithm, or the cen-

troid algorithm, groups objects as input data without knowing their categories

(decision classes), where clusters are defined deterministically. The algorithm

requires determining the number of clusters and scales well to many data sam-

ples. It is used to solve problems in many different fields and areas of research.

The K-means algorithm can analyze and categorize data points, helping

identify patterns and optimize the selection of relevant test cases. The algorithm

works by partitioning data into k clusters, assigning each data point to the cluster

with the nearest mean. This enables efficient grouping and recommendation of

regression tests based on similarities in software changes and historical test data.

In this experimental design, the variable number of clusters (k), ranging

from 2 to 10, is the independent variable impacting key performance measures,

the fault detection rate, and profit (defined in the next section) of regression tests

advised by the ML tool. The research seeks to identify the optimal cluster num-

ber to maximize these performance metrics.

Created the ML-based tool (Figure 1) gathered data from two sources: Data #1

and Data #2.

Data #1 includes the differences in code changes between the new software

build “N” and the previous build “N–1”. This data set comprises detailed infor-

mation about modifications at the component level of the software, collected

directly from the code repository.

The data set designated as Data #1 was extracted by a bespoke application

specifically designed to retrieve code differences. The following section outlines

the features and measurement methods employed to obtain Data #1:

 Added components: This feature lists the components present in the new

build but not in the old one. It is calculated by comparing the two builds’

components and identifying those unique to the new build.

 Removed components: This feature lists the components present in the old

build but not in the new one. It is calculated by comparing the two builds’

components and identifying those unique to the old build.

 Unchanged components: This feature lists the components present in both

builds, which have the same version. It is calculated by comparing the com-

ponents of the two builds and identifying those with matching versions.

 Unchecked components: This feature lists the components that could not be

checked for differences due to missing repository URLs or other issues. It is

calculated by identifying components with missing or mismatched repository

information.

M. L. Owoc, & A. Stambulski

128

 Increase in components: This is the net increase in the number of compo-

nents. It is calculated by subtracting the number of removed components

from the number of added components.

 Increase in peg revisions: This characteristic represents the increase in the

number of peg revisions. It is calculated by subtracting the number of peg re-

visions in the old build from the number of peg revisions in the new build.

 Compare components: This feature lists the components present in both

builds but have different versions. It includes detailed diffs for each compo-

nent, such as the number of lines added and removed in each file. The diffs

are fetched using version control system fetchers (e.g., SVN, Git).

 Difference per component: These are the detailed diffs for each component,

including the number of lines added and removed in each file and the differ-

ence in the number of authors. The diffs are calculated by comparing the re-

pository revisions of the components in the two builds.

Data #2 comprises the results of regression test suites executed on previous

software builds. The status of test cases after execution can be categorized as passed,

blocked due to test automation issues, or failed due to code bugs. This regression test

status data is collected from the test case repository system. Based on the specific

system test level and experience of the test teams, additional exceptions are applied,

such as keeping newly added test cases in the recommended TC by the ML tool for

a certain period to train the model and ensure the relevant SW quality level.

The ML-based tool was developed and trained using a dataset that includes

historical data on regression test execution outcomes from past software builds

(Data #2) and the corresponding code changes between these builds (Data #1).

The dataset, gathered over the last six months, provides a robust foundation for

the tool’s learning and predictive capabilities, enabling it to recommend regres-

sion tests effectively.

5. Defined KPI to measure model effectiveness

To assess the effectiveness of this research project, the regression test suites

recommended by the ML model are compared against the actual results from the

organization’s comprehensive set of regression tests. The effectiveness of the

ML model is quantified through metrics such as profit and fault detection rate,

which align with the predefined KPIs for the ML model. This comparison plays

a pivotal role in validating the utility and precision of the ML recommendations,

particularly in the context of regression testing KPIs.

Software quality management: Machine learning for recommendation…

129

Profit (KPI #1) evaluates the effectiveness of ML-recommended regression

tests, expressing this as a percentage of the overall test suites. This KPI provides

insights into the efficiency of machine-learning tools by indicating how well

they help achieve desired test coverage while minimizing excess testing, ulti-

mately contributing to better resource management:

 𝑃𝑟𝑜𝑓𝑖𝑡 = 1 −
𝑇𝑟

𝑅𝑡𝑐
 (1)

Tr – recommended regression tests by ML-based tool,

Rtc – full regression test suites.

Fault detection rate (KPI #2) in the predicted test evaluates the effectiveness

of the ML tool by measuring the proportion of recommended failed test cases

compared to the total failed test cases identified by the full regression suite. This

KPI assesses the model’s ability to select test cases that effectively target fault-

-prone code changes, ensuring critical defects are captured as they would be in

a comprehensive test suite.

 𝐹𝑎𝑢𝑙𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 (𝐹𝐷𝑅) =
𝐹𝑟

Rt
 (2)

Fr – number of test cases with failed status recommended by ML tool,

Rt – total number of test cases with failed status detected by the full regression

test suite.

FDR compares the faults detected by the predicted test cases to those de-

tected by running the complete test suite. This rate helps determine whether the

model-suggested suite adequately covers critical fault-prone areas without miss-

ing significant defects.

6. Results of recommendation

In a scientific study, a specific ML model was carefully implemented, trained,

and thoroughly checked in a software development organization. This research

took place during the regular CI process. Once the new software build got the

green light from quick tests, it was installed on the end-to-end system for a com-

plete round of system-level regression tests. The primary objective of this scien-

tific investigation was to find solutions to the growing issue of an increasing

number of regression test suites and to enhance their effectiveness (trunkbased

development.com).

https://trunkbaseddevelopment.com/
https://trunkbaseddevelopment.com/

M. L. Owoc, & A. Stambulski

130

While researching each valid and approved software build, the ML-based

tool recommended the regression tests suite. The research results were evaluated

per the defined KPIs, namely KPIs #1 and #2.

The comparison between the actual regression test suite execution results

(Figure 2) and those recommended by the ML-based tool (Figure 3) provides

a visual representation of the research and analysis conducted for each daily

approved software build. This visual insight allows for a comprehensive assess-

ment of how well the ML tool aligns with the real-world outcomes, offering

valuable insights into the effectiveness and accuracy of the ML recommenda-

tions in the dynamic context of daily software builds. This comparative analysis

serves as a tangible demonstration of the ML-based tool’s impact on optimizing

regression test execution and ensuring alignment with actual testing results.

Figure 2. Regression tests in daily execution

Source: Authors’ own elaboration based on internal reporting system.

Figure 3. Recommended by ML-based tools, the regression test suites

Source: Authors’ own elaboration based on collected data.

Software quality management: Machine learning for recommendation…

131

The comparison between Figure 2, depicting the actual execution of total

regression test suites daily across the organization, and Figure 3, illustrating the

ML tool-recommended regression tests, offers an initial insight into the research

findings. The bar charts reveal noticeable fluctuations in the daily recommended

regression tests (Figure 3), influenced by software changes between builds and

historical test execution results. The ML algorithm dynamically provides rec-

ommendations for daily CI regression tests juxtaposed with the actual scope of

executed regression tests.

This comparison is subjected to evaluation using defined KPIs, specifically

focusing on profit (1) as a measure of decreased test numbers and fault detection

rate (2) for tests recommended with failed results. The research findings are

consolidated and summarized for each testing team monthly, as presented in

Table 1. This comprehensive overview leads to intriguing and valuable conclu-

sions, providing a deeper understanding of the impact and effectiveness of the

ML-based tool in the context of CI regression testing across diverse testing

teams (cf. Section 5 of this article for a definition of fault detection rate and

profit in Table 1).

Table 1. ML-based recommended regression test suites

Test team
Run reg.

test cases

Recommended

regression

tests by ML

tool

Fault

detection rate

(%)

Profit

(%)

Reg. tests

not

executed

Time saved due

to not executed

reg. tests 1 TC,

15 min = 0,25h (h)

Test team 1 11159 1446 100.00 87.04 9713 2428.25

Test team 2 2207 1926 100.00 12.73 281 70.25

Test team 3 1897 1865 100.00 1.69 32 8

Test team 4 7026 5884 99.01 16.25 1142 285.5

Test team 5 951 935 99.47 1.68 16 4

Test team 6 328 296 100.00 9.76 32 8

Test team 7 7714 7521 100.00 2.50 193 48.25

Test team 8 2042 1413 100.00 30.80 629 157.25

Test team 9 1154 1126 100.00 2.43 28 7

Test team 10 762 621 100.00 18.50 141 35.25

Test team 11 6442 6319 100.00 1.91 123 30.75

Total 42179 29845 99.69 29.24 12330 3082.5

Source: Authors’ own elaboration.

The findings from Figure 3 reveal that the majority of regression tests con-

ducted in the regular official process yield positive results, surpassing an 85%

success rate on a daily basis.

M. L. Owoc, & A. Stambulski

132

When considering the ML-based recommended number of regression tests,

measured by Profit (KPI #1), variations emerge across different test teams. Cal-

culated profits range between 1.68% and 87.04%, with an overall average profit

of 29.24%. This diverse range prompts a deeper analysis of the actual tests with-

in each team.

Compared to the actual regression test results with failed results, the fault

detection rate in ML recommendations for regression test cases with failed status

stands high at 99.69%. This underscores the precision and reliability of the ML

tool in identifying tests associated with potential issues.

Regarding total monthly test numbers, the ML-based recommendation for

regression test cases amounts to 29,845 tests. This contrasts with the 42,179

regression tests performed through the regular process. These figures offer

a quantitative perspective on the optimization achieved through ML recommen-

dations, indicating a potential reduction in test numbers while maintaining a high

fault detection rate.

FDR measures the ML tool’s ability to recommend regression tests with

failed results compared to the actual outcomes indicating software bugs. On

average, it achieved 99.69% across all test teams. However, two teams slightly

fell below 100%, suggesting areas for potential improvement in ML recommen-

dations to enhance bug detection.

In Table 1, the calculated difference reveals the regression tests that were

not executed based on ML recommendations. Particularly noteworthy is Test

Team 1, where the ML tool suggested running only 1,446 test cases out of

11,159, yielding a substantial profit of 87.04%. This underscores the efficiency

gains and regression tests optimization potential of ML-based recommendations,

prompting further analysis within each test team for deeper insights.

Leveraging the organization’s extensive practice experience, the effort es-

timation for a single test case executed in the regression test suite is assessed

at 15 minutes. This includes test preparation, execution, post-analysis, and investi-

gation in case of failed results. Notably, the ML-based recommendation of regres-

sion test cases results in significant time savings. The calculated savings amount to

3,082.5 hours, representing the effort saved by executing only the recommended

regression tests, with an average FDR level of 99.69%. This conclusion underscores

the tangible benefits of resource efficiency and time optimization achieved through

applying ML-based recommendations in regression testing.

Software quality management: Machine learning for recommendation…

133

7. Conclusions

The study highlights the important role of ML in optimizing regression testing

for software development. By correlating software changes with historical re-

gression test results, the ML-based model recommends a balanced set of tests,

achieving a 29.24% reduction in test cases while maintaining a high fault detec-

tion rate of 99.69%. This optimization aligns with the organization’s rigorous

quality standards and results in a significant effort saving of 3,082.5 hours, un-

derscoring its efficiency and cost-effectiveness.

Moreover, the emphasis on financial benefits, reduced testing effort, and

alignment with quality assurance goals demonstrates the broader value of

ML-driven recommendations. This research also highlights the importance of

linking test cases to code changes, paving the way for algorithmic improvements

that enhance profit and fault detection rate as key quality indicators.

However, it is important to note the limitations of the study. The model’s

effectiveness depends on the quality and availability of historical test data,

which may not always be comprehensive or representative across diverse soft-

ware projects. Additionally, the approach may not effectively apply to all soft-

ware domains or highly dynamic development environments where code bases

and requirements change rapidly. Another limitation lies in the potential compu-

tational overhead of implementing and maintaining ML models, which could

pose challenges for smaller organizations with limited resources.

Future studies should explore advanced ML; techniques, evaluate broader

software contexts, and diversify testing approaches to deepen insights. Strength-

ening the connection between software code and specific regression tests could

further enhance the effectiveness of ML-driven recommendations toward a high-

er optimization level.

The study also anticipates future advancements, including adopting transfer

learning and large language models (LLMs) (Fan, 2023). These technologies

promise to revolutionize software testing through real-time code analysis and

automated test case generation, enabling higher efficiency and faster product

delivery. Transfer learning will facilitate precise testing with pre-trained models,

while LLMs will dynamically generate test cases and detect defects, offering

actionable insights for developers (Hoffmann & Frister, 2024; Wang, 2024).

In conclusion, the application of ML in regression testing represents a sub-

stantial advancement in quality management, offering a more efficient, resource-

effective, and robust approach that aligns seamlessly with continuous improve-

ment principles. By addressing the noted limitations through further research and

refinement, these technologies hold significant potential to transform software

development processes, ensuring exceptional product quality and cost efficiency.

M. L. Owoc, & A. Stambulski

134

Author contributions

Mieczyslaw Lech Owoc – 30% (research concept and design, data analysis and

interpretation, writing the article, critical revision of the article, final approval of

the article).

Adam Stambulski – 70% (research concept and design, collection and/or

assembly of data, data analysis and interpretation, writing the article, critical

revision of the article, final approval of the article).

Disclosure statement

No potential conflict of interest was reported by the author(s).

References

Alam, M. M., Priti, S. I., Fatema, K., Hasan, M., & Alam, S. (2024). Ensuring excel-

lence: A review of software quality assurance and continuous improvement in

software product development. In A. Hamdan (Eds.), Achieving sustainable busi-

ness through AI, technology education and computer science (Studies in Big Data,

Vol. 163, pp. 331-346). Springer. https://doi.org/10.1007/978-3-031-73632-2_28

Alexsoft report. (2023). Quality assurance, quality control, and testing ‒ the basics of

software quality management. https://www.altexsoft.com/whitepapers/quality-

assurance-quality-control-and-testing-the-basics-of-software-quality-management/

Arachchi, S. A. I. B. S., & Perera, I. (2018). Continuous integration and continuous

delivery pipeline automation for agile software project management. In 2018 Mora-

tuwa Engineering Research Conference (MERCon) (pp. 156-161). IEEE. https://

doi.org/10.1109/MERCon.2018.8421965

Da Roza, E. A., Lima, J. A. P., Silva, R. C., & Vergilio, S. R. (2022). Machine learning

regression techniques for test case prioritization in continuous integration environ-

ment. In 2022 IEEE International Conference on Software Analysis, Evolution and

Reengineering (SANER) (pp. 196-206). IEEE. https://doi.org/10.1109/SANER534

32.2022.00034

Fan, A. G., Gokkaya, B., Harman, M., Lyubarskiy, M., Sengupta, S., Yoo, S., & Zhang, J. M.

(2023). Large language models for software engineering: Survey and open prob-

lems. Cornell University. https://doi.org/10.48550/arXiv.2310.03533

Forgács, I., & Kovács, A. (2024). Modern software testing techniques. A practical guide

for developers and testers. Apress-Springer. https://doi.org/10.1007/978-1-4842-

9893-0

https://doi.org/10.1007/978-3-031-73632-2_28
https://www.altexsoft.com/whitepapers/quality-assurance-quality-control-and-testing-the-basics-of-software-quality-management/
https://www.altexsoft.com/whitepapers/quality-assurance-quality-control-and-testing-the-basics-of-software-quality-management/
https://doi.org/10.1109/MERCon.2018.8421965
https://doi.org/10.1109/MERCon.2018.8421965
https://doi.org/10.1109/SANER53432.2022.00034
https://doi.org/10.1109/SANER53432.2022.00034
https://doi.org/10.48550/arXiv.2310.03533
https://doi.org/10.1007/978-1-4842-9893-0
https://doi.org/10.1007/978-1-4842-9893-0

Software quality management: Machine learning for recommendation…

135

Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi, A., Golec, M.,

Stankovski, V., Wu, H., Abraham, A., Singh, M., Mehta, H., Ghosh, S. K., Baker, T.,

Parlikad, A. K., Lutfiyya, H., Kanhere, S. S., Sakellariou, R. ..., & Uhlig, S. (2022).

AI for next generation computing: Emerging trends and future directions. Internet

of Things, 19, 100514. https://doi.org/10.1016/j.iot.2022.100514

Goericke, S. (Ed.). (2020). The future of software quality assurance. Springer. https://

doi.org/10.1007/978-3-030-29509-7

Guizzo, G., Petke, J., Sarro, F., & Harman, H. (2021). Enhancing genetic improvement

of software with regression test selection. In IEEE/ACM 43rd International Con-

ference on Software Engineering (ICSE) (pp. 1323-1333). IEEE. https://doi.org/

10.1109/ICSE43902.2021.00120

Hoffmann, J., & Frister, D. (2024). Generating software tests for mobile applications

using fine-tuned large language models. In 2024 IEEE/ACM International Confer-

ence on Automation of Software Test (AST) (pp. 76-77). IEEE. http://doi.org/10.

1145/3644032.3644454

ISO. (2015). ISO 9001: Quality management systems. https://www.iso.org/standard/62

085.html

ISO. (2023). ISO/IEC 25010: Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – Product quality model. https://

www.iso.org/standard/78176.html

ISTQB AI Testing. (2021). Certified tester AI testing (CT-AI) syllabus. https://www.

istqb.org/certifications/

ISTQB Testing. (2018). Certified tester foundation level syllabus. International Software

Testing Qualifications Board. https://www.istqb.org/sdm_downloads/release-notes-

certified-tester-foundation-level-syllabus/

Kalech, M., Abreu, R., & Last, M. (2021). Artificial intelligence methods for software

engineering. World Scientific Connect. https://doi.org/10.1142/12360

Khaliq, Z. F. (2022). Artificial intelligence in software testing: Impact, problems, chal-

lenges and prospect. https://doi.org/10.48550/arXiv.2201.05371

Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S. C., & Park, S. (2021). Which crashes

should I fix first? Predicting top crashes at an early stage to prioritize debugging ef-

forts. IEEE Transactions on Software Engineering, 37(3), 430-447. https://iee

explore.ieee.org/document/5711013

Kobyliński, A. (2021). Modele cyklu życia oprogramowania. Modele tradycyjne [Soft-

ware development life cycle models. Traditional models] (1 ed.). SGH.

Laporte, C. Y., & April, A. (2018). Software quality assurance. IEEE Computer Society.

John Wiley & Sons. https://doi.org/10.1002/9781119312451

Liu, K., Reddivari, S., & Reddivari, K. (2022). Artificial intelligence in software re-

quirements engineering: State-of-the-art. In IEEE 23rd International Conference on

Information Reuse and Integration for Data Science (IRI) (pp. 106-111). IEEE.

https://doi.org/10.1109/IRI54793.2022.00034

https://doi.org/10.1016/j.iot.2022.100514
https://doi.org/10.1007/978-3-030-29509-7
https://doi.org/10.1007/978-3-030-29509-7
https://doi.org/10.1109/ICSE43902.2021.00120
https://doi.org/10.1109/ICSE43902.2021.00120
http://doi.org/10.1145/3644032.3644454
http://doi.org/10.1145/3644032.3644454
https://www.iso.org/standard/62085.html
https://www.iso.org/standard/62085.html
https://www.iso.org/standard/78176.html
https://www.iso.org/standard/78176.html
https://www.istqb.org/certifications/
https://www.istqb.org/certifications/
https://www.istqb.org/sdm_downloads/release-notes-certified-tester-foundation-level-syllabus/
https://www.istqb.org/sdm_downloads/release-notes-certified-tester-foundation-level-syllabus/
https://doi.org/10.1142/12360
https://doi.org/10.48550/arXiv.2201.05371
https://ieeexplore.ieee.org/document/5711013
https://ieeexplore.ieee.org/document/5711013
https://doi.org/10.1002/9781119312451
https://doi.org/10.1109/IRI54793.2022.00034

M. L. Owoc, & A. Stambulski

136

Marijan, D., Gotlieb, A., & Liaaen, M. (2018). A learning algorithm for optimizing con-

tinuous integration development and testing practice. Journal of Software: Practice

and Experience, 49(2), 192-213. https://doi.org/10.1002/spe.2661

Marijan, D. (2023). Comparative study of machine learning test case prioritization for

continuous integration testing. Software Quality Journal, 31, 1415-1438. https://

doi.org/10.1007/s11219-023-09646-0

Mårtensson, T., Ståhl, D., & Bosch, J. (2019). Test activities in the continuous integra-

tion and delivery pipeline. Software: Evolution and Process, 31(4), e2153. https://

doi.org/10.1002/smr.2153

Nama, P. (2024). Integrating AI in testing automation: Enhancing test coverage and

predictive. World Journal of Advanced Engineering Technology and Sciences,

13(01), 769-782. https://doi.org/10.30574/wjaets.2024.13.1.0486

Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G., & Abraham, A. (2022).

A systematic literature review on software defect prediction using artificial intelli-

gence: Datasets, data validation methods, approaches, and tools. Engineering Ap-

plications of Artificial Intelligence, 111, 104773. https://doi.org/10.1016/j.enga

ppai.2022.104773

Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L. (2022). Test case selection and

prioritization using machine learning: A systematic literature review. Empirical

Software Engineering, 27(2), 29. https://doi.org/10.1007/s10664-021-10066-6

PMI. (2021). PMI PMBOOK: A guide to the project management body of knowledge

(PMBOK Guide) (7th ed.). PMI Standard. https://www.pmi.org/pmbok-guide-stan

dards/foundational/pmbok

Rai, D., & Seth, K. (2014). Regression test case optimization using honey bee mating

optimization algorithm with fuzzy rule base. World Applied Sciences Journal,

31(4), 654-662. https://www.researchgate.net/publication/336133351_Regression_

Test_Case_Optimization_Using_Honey_Bee_Mating_Optimization_Algorithm_wi

th_Fuzzy_Rule_Base

Russell, S. J., & Norvig, P. (2020). Artificial intelligence: A modern approach (4 ed.).

Pearson.

Sutar, S., Kumar, R., Pai, S., & Shwetha, B. S. (2020). Regression test cases selection

using natural language processing. In 2020 International Conference on Intelligent

Engineering and Management (ICIEM) (pp. 301-305). IEEE. https://doi.org/10.11

09/ICIEM48762.2020.9160225

scikit-learn.org. (2024). Clustering (User guide). https://scikit-learn.org/stable/modules

/clustering.html#clustering

Shash, M. (2021). Using machine learning for log analysis and anomaly detection:

A practical approach to finding the root cause. DZone. https://dzone.com/articles/

using-machine-learning-for-log-analysis-and-anomal

https://doi.org/10.1002/spe.2661
https://doi.org/10.1007/s11219-023-09646-0
https://doi.org/10.1007/s11219-023-09646-0
https://doi.org/10.1002/smr.2153
https://doi.org/10.1002/smr.2153
https://doi.org/10.30574/wjaets.2024.13.1.0486
https://doi.org/10.1016/j.engappai.2022.104773
https://doi.org/10.1016/j.engappai.2022.104773
https://doi.org/10.1007/s10664-021-10066-6
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://www.pmi.org/pmbok-guide-standards/foundational/pmbok
https://www.researchgate.net/publication/336133351_Regression_Test_Case_Optimization_Using_Honey_Bee_Mating_Optimization_Algorithm_with_Fuzzy_Rule_Base
https://www.researchgate.net/publication/336133351_Regression_Test_Case_Optimization_Using_Honey_Bee_Mating_Optimization_Algorithm_with_Fuzzy_Rule_Base
https://www.researchgate.net/publication/336133351_Regression_Test_Case_Optimization_Using_Honey_Bee_Mating_Optimization_Algorithm_with_Fuzzy_Rule_Base
https://doi.org/10.1109/ICIEM48762.2020.9160225
https://doi.org/10.1109/ICIEM48762.2020.9160225
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://dzone.com/articles/using-machine-learning-for-log-analysis-and-anomal
https://dzone.com/articles/using-machine-learning-for-log-analysis-and-anomal

Software quality management: Machine learning for recommendation…

137

Soares, E., Sizilio, G., Santos, J., da Costa, D., & Kulesza, U. (2022). The effects of

continuous integration on software development: A systematic literature review.

Empirical Software Engineering, 27(3), 78. https://doi.org/10.1007/s10664-021-

10114-1

Stige, Å., Zamani, E. D., Mikalef, P., & Zhu, Y. (2023). Artificial intelligence (AI) for

user experience (UX) design: A systematic literature review and future research

agenda. Information Technology & People, 37(6), 2324-2352. https://doi.org/10.

1108/ITP-07-2022-0519

Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., & Elger, G. (2021). Predictive

maintenance enabled by machine learning: Use cases and challenges in the automo-

tive industry. Reliability Engineering & System Safety, 215, 107864. https://doi.

org/10.1016/j.ress.2021.107864

Tuncali, C. E., Fainekos, G., Prokhorov, D., Ito, H., & Kapinski, J. (2019). Require-

ments-driven test generation for autonomous vehicles with machine learning com-

ponents. IEEE Transactions on Intelligent Vehicles, 5(2), 265-280. https://doi.org/

10.1109/TIV.2019.2955903

Virvou, M., Tsihrintzis, G. A., Bourbakis, N. G., & Jain, L. C. (2022). Handbook on

artificial intelligence-empowered applied software engineering. Vol. 1: Novel

methodologies to engineering smart software systems. Springer. https://doi.org/

10.1007/978-3-031-08202-3

Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., & Wang, Q. (2024). Software testing

with large language model: Survey, landscape, and vision. IEEE Transactions on

Software Engineering, 50(4), 911-936. https://doi.org/10.1109/TSE.2024.3368208

Yang, L., Chen, J., Wang, Z., Wang, W., Jiang, J., Dong, X., & Zhang, W. (2021). Semi-

-supervised log-based anomaly detection via probabilistic label estimation.

In EEE/ACM 43rd International Conference on Software Engineering (ICSE)

(pp. 1448-1460). IEEE. https://doi.org/10.1109/ICSE43902.2021.00130

Yaraghi, A. S., Bagherzadeh, M., Kahani, N., & Briand, L. C. (2022). Scalable and accu-

rate test case prioritization in continuous integration contexts. IEEE Transactions

on Software Engineering, 49(4), 1615-1639. https://doi.org/10.1109/TSE.2022.

3184842

https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1007/s10664-021-10114-1
https://doi.org/10.1108/ITP-07-2022-0519
https://doi.org/10.1108/ITP-07-2022-0519
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1016/j.ress.2021.107864
https://doi.org/10.1109/TIV.2019.2955903
https://doi.org/10.1109/TIV.2019.2955903
https://doi.org/10.1007/978-3-031-08202-3
https://doi.org/10.1007/978-3-031-08202-3
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/ICSE43902.2021.00130
https://doi.org/10.1109/TSE.2022.3184842
https://doi.org/10.1109/TSE.2022.3184842

