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Abstract. In the paper the 1D energy equation with an interval source function is consi-
dered. For this type of equation the 1st scheme of the interval boundary element method is 
presented. As an example the pure metal crystallization process is analyzed. In the final part 
of the paper the results of numerical computations for the cooper crystallization process 
with the interval source function are shown. 

1. Interval boundary element method 

Transient temperature field in 1D domain describes the following energy equa-
tion  
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where c is the volumetric specific heat, λ is the thermal conductivity, ( , )Q x t%  is  

the interval source function [1], T,  x,  t  denote temperature, spatial co-ordinate 
and time, respectively. 

The above equation must be supplemented by the following boundary-initial 
conditions 
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The 1st scheme of the boundary element method has been applied to solve  
the problem analyzed [2-5].  
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At first the time grid is introduced 

 0 1 2 10 f f Ft t t t t t−= < < < < < < < < ∞K K  (3) 

with a certain constant time step 1f ft t t −∆ = − . 
The boundary interval integral equation corresponding to the transition 
1f ft t− →  is of the form 
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where ξ is the point where the concentrated heat source is applied, ( , , , )fT x t t∗ ξ  

is the fundamental solution, ( , , , )fq x t t∗ ξ  is the heat flux corresponding  

to the fundamental solution, ( , ) ( , ) /q x t T x t x= −λ ∂ ∂%%  is the interval boundary heat 

flux, ( , )T x t%  is the interval temperature value. 
In the case of using the constant elements with respect to time the equation (4) 

can be written as 
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The numerical approximation of this equation leads to the following interval 
equation 
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where 
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and 
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while /a cλ=  is the diffusion coefficient. 
The interval values 1( , )fP t −ξ%  are defined as 
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and the interval values connected with the interval source function take the form 
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Taking into account the boundary conditions (2) the following system  
of interval equations is obtained 
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where 
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and 
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After determining the ’missing’ boundary values the interval temperatures 
( , )fT t% ξ  at internal nodes of the domain considered are calculated using  

the formula 
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2. Interval source function 

The solidification process in one-dimensional domain of pure metal is presented 
as an example of the interval source function appearing in the mathematical  
description. It is assumed that the nucleation coefficient and nuclei growth one are 
interval values and the both coefficients are proportional to the second power  
of undercooling. The driving force of crystallization is the local and temporary  
undercooling below solidification point Tcr. The nucleation and nuclei growth are 
proportional to the second power of undercooling [6, 7]. 

The interval source function can be defined using the following formula 
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where crQ  is the volumetric latent heat, ( , )S x t%  is the interval volumetric fraction 

of the solid state at the neighborhood of the point considered x. 
In this paper the exponential solidification model proposed by Mehl-Johnson-

Avrami-Kolmogoroff is applied 

 [ ]( , ) 1 exp ω( , )S x t x t= − −  (16) 

or 
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where ( , )N x t%  is the interval grain density [grains/m3 ], ( , )R x t%  is the interval 

value of the temporary radius of single grain. 
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The interval calculations of the source function connected with the crystalliza-
tion process modelling require to take into account the interval values of the nucle-

ation coefficient γ γ, γ=%  and the growth coefficient µ µ, µ=% . 

The grain density ( , )N x t%  and the solidification rate ( , )u x t%  are interval values 

and are defined as follows 

 2( , ) γ ( , )N x t T x t= ∆% %  (18) 

and 

 2( , ) µ ( , )u x t T x t= ∆% %  (19) 

where the undercooling ( , )T x t∆  is expressed as 
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while ( , )T x t  and ( , )T x t  denote the first and the second endpoints of the  

temperature interval respectively. 
The interval source function is calculated according to the rules of the interval 

arithmetic [6] and can be expressed as follows 
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3. Results of computations 

Let us consider the crystallization process proceeding in a copper plate of di-
mension L = 0.01 m (one-dimensional problem). The following input data have 
been introduced: initial temperature T0 = 1120°C, solidification point Tcr = 1083°C, 
thermal conductivity λ = 280 W/m⋅K, specific heat c = 490 J/kg⋅K, density ρ = 8600 

kg/m3, nuclei coefficient 9 9γ 10 1000, 10 1000= − +%  1/K2⋅m3, growth coefficient 

6 6µ 2.95 10 , 3.05 10− −= ⋅ ⋅%  m/s⋅K2 , volumetric latent heat crQ  = 1754.4 MJ/m3. On 

the left side of the domain considered the boundary condition of the second type is 
assumed: qb = 0 W/m2, on the right side the boundary condition of the first type is 
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assumed: Tb = 1070°C, the domain considered has been divided into 20 constant 
elements, time step ∆ t = 0.002 s. 

Figures 1 and 2 illustrate the cooling curves obtained at the nodes 10 (x = 
0.00475 m) and 12 (x = 0.00575 m) of the domain considered, where Tem L, Tem 
R denote the lower and the upper bounds of the temperature intervals. 
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Fig. 1. Cooling curves at node 10 
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Fig. 2. Cooling curves at node 12 

Figure 3 presents the courses of the source function at the same nodes, where 
Source L and Source R denote the first and the second endpoints of the source 
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interval. Figure 4 illustrates the temporary interval mean radiuses at the nodes  
10 and 12. 
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Fig. 3. The courses of the source function 

0

25

50

75

100

125

0,0 1,0 2,0 3,0 4,0t[s]

R[m]·10-6

Rad L

Rad R
node 12

node 10

 
Fig. 4. The courses of the radius 

Summing up, the interval boundary element method is an effective tool in  
numerical modelling of the problems with the interval source function. 
 

This paper is a part of the project ”Progress and application of identification 
methods in moving boundary problems” (No. N507 3592 33). 
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